Solve each problem.

Answers

1) A post office has four hundred five pieces of junk mail they want to split evenly between twenty-two mail trucks. How many extra pieces of junk mail will they have if they give each truck the same amount?
2) At the carnival, forty-seven friends bought five hundred forty-six tickets. If they wanted to split all the tickets so each friend got the same amount, how many more tickets would they need to buy?
3) A clown needed five hundred sixty-eight balloons for a party he was going to, but the balloons only came in packs of eighteen. How many packs of balloons would he need to buy?
4) A vat of orange juice was two hundred pints. If you wanted to pour the vat into eighteen glasses with the same amount in each glass, how many pints would be in each glass?
5) Each house a carpenter builds needs twenty-eight sinks. If he bought six hundred fifty-five sinks, how many houses would that cover?
6) A movie theater needed two hundred sixty-six popcorn buckets. If each package has forty-two buckets in it, how many packages will they need to buy?
7) Robin had four hundred seven songs on her mp3 player. If she wanted to put the songs equally into thirty-eight different playlists, how many songs would she have left over?
8) A truck can hold forty-five boxes. If you needed to move nine hundred one boxes across town, how many trips would you need to make?
9) A machine in a candy company creates five hundred twenty-five pieces of candy a minute. If a small box of candy has forty-nine pieces in it how many full boxes does the machine make in a minute?
10) George had one hundred ninety-six pieces of candy. If he wants to split the candy into thirty-nine bags with the same amount of candy in each bag, how many more pieces would he need to make sure each bag had the same amount?

Solve each problem.

Answers

1) A post office has four hundred five pieces of junk mail they want to split evenly between twenty-two mail trucks. How many extra pieces of junk mail will they have if they give each truck the same amount?
2) At the carnival, forty-seven friends bought five hundred forty-six tickets. If they wanted to split all the tickets so each friend got the same amount, how many more tickets would they need to buy?
3) A clown needed five hundred sixty-eight balloons for a party he was going to, but the balloons only came in packs of eighteen. How many packs of balloons would he need to buy?
4) A vat of orange juice was two hundred pints. If you wanted to pour the vat into eighteen glasses with the same amount in each glass, how many pints would be in each glass?
5) Each house a carpenter builds needs twenty-eight sinks. If he bought six hundred fifty-five sinks, how many houses would that cover?
6) A movie theater needed two hundred sixty-six popcorn buckets. If each package has forty-two buckets in it, how many packages will they need to buy?
7) Robin had four hundred seven songs on her mp3 player. If she wanted to put the songs equally into thirty-eight different playlists, $407 \div 38=10$ r27 how many songs would she have left over?
8) A truck can hold forty-five boxes. If you needed to move nine hundred one boxes across town, how many trips would you need to make?
9) A machine in a candy company creates five hundred twenty-five pieces of candy a minute. If a small box of candy has forty-nine pieces in it how many full boxes does the machine make in a minute?
10) George had one hundred ninety-six pieces of candy. If he wants to split the candy into thirty-nine bags with the same amount of candy in each bag, how many more pieces would he need to make sure each bag had the same amount?

Name: Answer Key	
$405 \div 22=18 \mathrm{r} 9$	Answers
	1. 9
	2. 18
$546 \div 47=11 \mathrm{r} 29$	3. 32
	4. 11
$568 \div 18=31 \mathrm{r} 10$	5. 23
	6. 7
$200 \div 18=11 \mathrm{r} 2$	7. 27
$655 \div 28=23 \mathrm{r} 11$	8. 21
	9. 10
	10. 38

$$
901 \div 45=20 \mathrm{r} 1
$$

$$
525 \div 49=10 \mathrm{r} 35
$$

$$
196 \div 39=5 \mathrm{r} 1
$$

